RoboNet: A Dataset for Large-Scale Multi-Robot Learning


This post is cross-listed at the SAIL Blog and the CMU ML blog.

In the last decade, we’ve seen learning-based systems provide transformative solutions for a wide range of perception and reasoning problems, from recognizing objects in images to recognizing and translating human speech. Recent progress in deep reinforcement learning (i.e. integrating deep neural networks into reinforcement learning systems) suggests that the same kind of success could be realized in automated decision making domains. If fruitful, this line of work could allow learning-based systems to tackle active control tasks, such as robotics and autonomous driving, alongside the passive perception tasks to which they have already been successfully applied.

While deep reinforcement learning methods - like Soft Actor Critic - can learn impressive motor skills, they are challenging to train on large and broad data that is not from the target environment. In contrast, the success of deep networks in fields like computer vision was arguably predicated just as much on large datasets, such as ImageNet, as it was on large neural network architectures. This suggests that applying data-driven methods to robotics will require not just the development of strong reinforcement learning methods, but also access to large and diverse datasets for robotics. Not only can large datasets enable models that generalize effectively, but they can also be used to pre-train models that can then be adapted to more specialized tasks using much more modest datasets. Indeed, “ImageNet pre-training” has become a default approach for tackling diverse tasks with small or medium datasets - like 3D building reconstruction. Can the same kind of approach be adopted to enable broad generalization and transfer in active control domains, such as robotics?


Prof. Anca Dragan Talks About Human-Robot Interaction for WIRED


Prof. Anca Dragan gave a talk as part of the WIRED25 summit, explaining some of the challenges robots face when interacting with people. First, robots that share space with people, from autonomous cars to quadrotors to indoor mobile robots, need to anticipate what people plan on doing and make sure they can stay out of the way. This is already hard, because robots are not mind readers, and yet they need access to a rough simulator of us, humans, that they can use to help them decide how to act. The bar gets raised when it’s crowded, because then robots have to also understand how they can influence the actions that people take, like getting another driver to slow down and make space for a merging autonomous car. And what if the person decides to accelerate instead? Find out about the ways in which robots can negotiate these situations in the video below.


Can We Learn the Language of Proteins?


The incredible success of BERT in Natural Language Processing (NLP) showed that large models trained on unlabeled data are able to learn powerful representations of language. These representations have been shown to encode information about syntax and semantics. In this blog post we ask the question: Can similar methods be applied to biological sequences, specifically proteins? If so, to what degree do they improve performance on protein prediction problems that are relevant to biologists?

We discuss our recent work on TAPE: Tasks Assessing Protein Embeddings (preprint) (github), a benchmarking suite for protein representations learned by various neural architectures and self-supervised losses. We also discuss the challenges that proteins present to the ML community, previously described by xkcd:


Look then Listen: Pre-Learning Environment Representations for Data-Efficient Neural Instruction Following


When learning to follow natural language instructions, neural networks tend to be very data hungry – they require a huge number of examples pairing language with actions in order to learn effectively. This post is about reducing those heavy data requirements by first watching actions in the environment before moving on to learning from language data. Inspired by the idea that it is easier to map language to meanings that have already been formed, we introduce a semi-supervised approach that aims to separate the formation of abstractions from the learning of language. Empirically, we find that pre-learning of patterns in the environment can help us learn grounded language with much less data.


Collaborating with Humans Requires Understanding Them


AI agents have learned to play Dota, StarCraft, and Go, by training to beat an automated system that increases in difficulty as the agent gains skill at the game: in vanilla self-play, the AI agent plays games against itself, while in population-based training, each agent must play against a population of other agents, and the entire population learns to play the game.

This technique has a lot going for it. There is a natural curriculum in difficulty: as the agent improves, the task it faces gets harder, which leads to efficient learning. It doesn’t require any manual design of opponents, or handcrafted features of the environment. And most notably, in all of the games above, the resulting agents have beaten human champions.

The technique has also been used in collaborative settings: OpenAI had one public match where each team was composed of three OpenAI Five agents alongside two human experts, and the For The Win (FTW) agents trained to play Quake were paired with both humans and other agents during evaluation. In the Quake case, humans rated the FTW agents as more collaborative than fellow humans in a participant survey.


Functional RL with Keras and Tensorflow Eager


In this blog post, we explore a functional paradigm for implementing reinforcement learning (RL) algorithms. The paradigm will be that developers write the numerics of their algorithm as independent, pure functions, and then use a library to compile them into policies that can be trained at scale. We share how these ideas were implemented in RLlib’s policy builder API, eliminating thousands of lines of “glue” code and bringing support for Keras and TensorFlow 2.0.


Deep Dynamics Models for Dexterous Manipulation


Figure 1: Our approach (PDDM) can efficiently and effectively learn complex dexterous manipulation skills in both simulation and the real world. Here, the learned model is able to control the 24-DoF Shadow Hand to rotate two free-floating Baoding balls in the palm, using just 4 hours of real-world data with no prior knowledge/assumptions of system or environment dynamics.

Dexterous manipulation with multi-fingered hands is a grand challenge in robotics: the versatility of the human hand is as yet unrivaled by the capabilities of robotic systems, and bridging this gap will enable more general and capable robots. Although some real-world tasks (like picking up a television remote or a screwdriver) can be accomplished with simple parallel jaw grippers, there are countless tasks (like functionally using the remote to change the channel or using the screwdriver to screw in a nail) in which dexterity enabled by redundant degrees of freedom is critical. In fact, dexterous manipulation is defined as being object-centric, with the goal of controlling object movement through precise control of forces and motions — something that is not possible without the ability to simultaneously impact the object from multiple directions. For example, using only two fingers to attempt common tasks such as opening the lid of a jar or hitting a nail with a hammer would quickly encounter the challenges of slippage, complex contact forces, and underactuation. Although dexterous multi-fingered hands can indeed enable flexibility and success of a wide range of manipulation skills, many of these more complex behaviors are also notoriously difficult to control: They require finely balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining control of unactuated objects. Success in such settings requires a sufficiently dexterous hand, as well as an intelligent policy that can endow such a hand with the appropriate control strategy. We study precisely this in our work on Deep Dynamics Models for Learning Dexterous Manipulation.


Sample Efficient Evolutionary Algorithm for Analog Circuit Design


In this post, we share some recent promising results regarding the applications of Deep Learning in analog IC design. While this work targets a specific application, the proposed methods can be used in other black box optimization problems where the environment lacks a cheap/fast evaluation procedure.

So let’s break down how the analog IC design process is usually done, and then how we incorporated deep learning to ease the flow.


rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch


UPDATE (15 Feb 2020): Documentation is now available for rlpyt! See it at It describes program flow, code organization, and implementation details, including class, method, and function references for all components.  The code examples still introduce ways to run experiments, and now the documentation is a more in-depth resource for researchers and developers building new ideas with rlpyt.

Since the advent of deep reinforcement learning for game play in 2013, and simulated robotic control shortly after, a multitude of new algorithms have flourished. Most of these are model-free algorithms which can be categorized into three families: deep Q-learning, policy gradients, and Q-value policy gradients. Because they rely on different learning paradigms, and because they address different (but overlapping) control problems, distinguished by discrete versus continuous action sets, these three families have developed along separate lines of research. Currently, very few if any code bases incorporate all three kinds of algorithms, and many of the original implementations remain unreleased. As a result, practitioners often must develop from different starting points and potentially learn a new code base for each algorithm of interest or baseline comparison. RL researchers must invest time reimplementing algorithms–a valuable individual exercise but one which incurs redundant effort across the community, or worse, one that presents a barrier to entry.

Yet these algorithms share a great depth of common reinforcement learning machinery. We are pleased to share rlpyt, which leverages this commonality to offer all three algorithm families built on a shared, optimized infrastructure, in one repository. Available from BAIR at, it contains modular implementations of many common deep RL algorithms in Python using Pytorch, a leading deep learning library. Among numerous existing implementations, rlpyt is a more comprehensive open-source resource for researchers.


A Deep Learning Approach to Data Compression


We introduce Bit-Swap, a scalable and effective lossless data compression technique based on deep learning. It extends previous work on practical compression with latent variable models, based on bits-back coding and asymmetric numeral systems. In our experiments Bit-Swap is able to beat benchmark compressors on a highly diverse collection of images. We’re releasing code for the method and optimized models such that people can explore and advance this line of modern compression ideas. We also release a demo and a pre-trained model for Bit-Swap image compression and decompression on your own image. See the end of the post for a talk that covers how bits-back coding and Bit-Swap works.